A generalized defective renewal equation for the surplus process perturbed by diffusion
نویسندگان
چکیده
In this paper, we consider the surplus process of the classical continuous time risk model containing an independent diffusion (Wiener) process. We generalize the defective renewal equation for the expected discounted function of a penalty at the time of ruin in Garber and Landry [Insurance: Math. Econ. 22 (1998) 263]. Then an asymptotic formula for the expected discounted penalty function is proposed. In addition, the associated claim size distribution is studied, and reliability-based class implications for the distribution are given. © 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
On the expected discounted penalty function for a perturbed risk process driven by a subordinator
The Expected Discounted Penalty Function (EDPF) was introduced in a series of now classical papers [Gerber, H.U., Shiu, E.S.W., 1997. The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin. Insurance: Math. Econ. 21, 129–137; Gerber, H.U., Shiu, E.S.W., 1998a. On the time value of ruin. N. Am. Actuar. J. 2 (1), 48–78; Gerber, H.U., Shiu, E.S.W.,...
متن کاملStructural properties of Gerber–Shiu functions in dependent Sparre Andersen models
Available online xxxx Keywords: Defective renewal equation Compound geometric distribution Ladder height Lundberg's fundamental equation Generalized adjustment coefficient Cramer's asymptotic ruin formula Esscher transform Last interclaim time NWU NBU a b s t r a c t The structure of various Gerber–Shiu functions in Sparre Andersen models allowing for possible dependence between claim sizes and...
متن کاملOn the discounted penalty function in the renewal risk model with general interclaim times
The defective renewal equation satisfied by the Gerber-Shiu discounted penalty function in the renewal risk model with arbitrary interclaim times is analyzed. The ladder height distribution is shown to be a mixture of residual lifetime claim severity distributions, which results in an invariance property satisfied by a large class of claim amount models. In particular, when claims are exponenti...
متن کاملHomotopy Perturbation Method for the Generalized Fisher’s Equation
More recently, Wazwaz [An analytic study of Fisher’s equation by using Adomian decomposition method, Appl. Math. Comput. 154 (2004) 609–620] employed the Adomian decomposition method (ADM) to obtain exact solutions to Fisher’s equation and to a nonlinear diffusion equation of the Fisher type. In this paper, He’s homotopy perturbation method is employed for the generalized Fisher’s equation to o...
متن کاملA hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer
The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...
متن کامل